Residual-life estimation for components with non-symmetric priors

نویسندگان

  • SANTANU CHAKRABORTY
  • NAGI GEBRAEEL
  • MARK LAWLEY
  • HONG WAN
چکیده

Condition monitoring uses sensory signals to assess the health of engineering systems. A degradation model is a mathematical characterization of the evolution of a condition signal. Our recent research focuses on using degradation models to compute residuallife distributions for degrading components. Residual-life distributions are important for providing probabilistic estimates of failure time for use in maintenance planning and spare parts inventory management. To obtain residual-life distributions, our earlier work assumed the degradation model’s stochastic parameters to be normally distributed. This paper investigates the performance of these residual-life distributions when the underlying normality assumptions are not satisfied. The paper also develops methods for estimating residual-life when the stochastic parameters of the degradation model follow more general distributions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Bayesian nonparametric regression with varying residual density.

We consider the problem of robust Bayesian inference on the mean regression function allowing the residual density to change flexibly with predictors. The proposed class of models is based on a Gaussian process prior for the mean regression function and mixtures of Gaussians for the collection of residual densities indexed by predictors. Initially considering the homoscedastic case, we propose ...

متن کامل

of ISDS 97 - 04 , Duke UniversityEXPANSION ESTIMATION BY BAYES RULESByBrani

In the problem of estimating a location parameter in any symmetric unimodal location parameter model, we demonstrate that Bayes rules with respect to squared error loss can be expanders for some priors that belong to the family of all symmetric priors. That generalizes the results obtained by DasGupta and Rubin for the one dimensional case. We also consider symmetric priors which either have an...

متن کامل

Estimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power

Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...

متن کامل

Maximum a posterior linear regression with elliptically symmetric matrix variate priors

In this paper, elliptic symmetric matrix variate distribution is proposed as the prior distribution for maximum a posterior linear regression (MAPLR) based model adaptation. The exact close form solution of MAPLR with elliptically symmetric matrix variate priors is obtained. The effects of the proposed prior in MAPLR are characterized and compared with conventional maximum likelihood linear reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009